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We present a method for calculating the two-dimensional steady
state flow of stratified Newtonian liquids. Lagrange multipliers are used
to impose the free surface conditions. When surface tension is not
vanishing, contact angles are easily introduced. Inlet and outlet free
sections are treated by means of a technique which allows us to
calculate layer thicknesses as part of the result. Parametric studies are
thereby facilitated. The solution procedure is derived from a variational
approach. At each iteration, a linear system is obtained by linearizing
the weak form of the problem, A finite element discretization is carried
out on this continuous system. The mesh is adapted to the successive
canfigurations of the free boundaries. ill-shaped elements are corrected
by exerting artificial forces on the mesh vertices., The global iterative
scheme exhibits a quasi-quadratic convergence. The outflow from a
slot and the curtain coating flow are analysed and illustrate the power
of the method.  © 1994 Academic Press, inc.

1. INTRODUCTION

The film coating process consists in simultaneously
spreading several liquid layers onto a moving plastic
support. As each liquid has specific properties, a very precise
uniformity of the layers is required. Improving the techni-
que has been a constant objective in the photographic
industry and has led to developing several procedures,
among which the slide coating and the curtain coating
processes should be retained. A discussion of the advantages
and difficulties of curtain coating may be found in
Pulkrabek and Wabrek [1].

Mathematical analysis is of course essential to under-
stand the physics of the phenomena involved (viscosity,
surface tension, inertial effects). A general theory of film
coating is given in Deryagin and Levi [2]. However, this
approach has strong limitations because the problem is
highly non-linear. Hence, as experiments are long and very
expensive, using the predictive capacity of modern com-
puters has become more and more widespread for the last
decade. Numerical simulation of film coating was initiated
by Saito and Scriven [3], Kistler and Scriven [4], and
Kistler [5], whose contributions should be stressed. In this

paper, we focus on calculating the flow in critical regions,
such as the curtain flow or the outflow from a slot—where
a supplementary layer is injected under a stratified flow.
These calculations provide impoertant information con-
cerning the presence of recirculations, the configuration of
the interfaces, and the location of their origin on the wall,
An additional objective would be to predict the flow
stability. This problem, which is addressed in Christodoulou

-and Scriven [6], is not examined here.

We present an original method for calculating the
two-dimensional steady state isothermal flow of stratified
Newtonian liquids. This method is an extension of the work
of Dupret [7-9] and is devoted to solving free boundary
problems, with or without surface tension, using the
Galerkin finite element technique in the velocity—pressure
formulation. A particular feature lies in introducing
Lagrange multipliers (following Babuska [10]) for
imposing the kinematic condition on the free surfaces. The
normal stress condition is also imposed in a weak sense,
and, when surface tension is not vanishing, integration by
parts of this equation is carried out over the free boundaries
in a suitable manner, which is similar, but differs from the
method of Ruschak [11]. Contact angles are thereby easily
imposed at the ends of these lines. Moreover, inlet and
outlet free sections are treated by means of a particular
technique—also based on the use of Lagrange multipliers—
which does not require us to impose the layer thicknesses,
but to calculate the latter as part of the result. Parametric
studies are facilitated, since solutions may be obtained
sequentially by using cach successive result as an initial
value for a new calculation.

The solution procedure is derived from a variational
approach. At each iteration, the linear system to be solved
is obtained by linearizing the weak form of the problem.
Discretization is carried out on this continuous system. The
same technique was used in Dupret [7,9] and in Kruyt
et al. [ 12]. After solution of the linear system, each iteration
is followed by a correction step. The mesh is moved in
order to be adapted to the new configuration of the free
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boundaries, and the nodal values of the unknowns are
corrected according to mesh deformation. In order to
obtain well-behaved elements, a particular algorithm has
been developed, which consists in exerting appropriate
“pseudo-forces™ at the vertices of the elements, in such a
manner that overly acute or obtuse angles tend to be
corrected. Mesh correction is decoupled from the solution
of the linear system. The global iterative scheme exhibits a
quasi-quadratic convergence. Several examples are analysed
and illustrate the power of the method.

2. DESCRIPTION OF THE PROBLEM

2.1, Strong Formulation

Consider in Fig. 1 a schematic description of (a) the out-
flow from a planar slot, or (b) the curtain flow, which both
take place in the film coating process. In both cases, a set of
N different fluids are superposed and flow together without
mixing. We assume that the fluids are Newtonian and
incompressible, and that the flows are steady, two-dimen-
sional, and isothermal. Symbols p'" and px'* denote the
specific mass and viscosity of fluid number i (1 i< N =3,
here).

The liguid—atmosphere and liquid-liquid interfaces are
unknown free boundaries. Fluid numbering is performed in
such a way that layers () and (i + 1) are separated by inter-
face (i), where a constant surface tension ¢'” is acting.
Indexes i=AN and possibly i=0 stand for the liguid-
atmosphere interfaces.
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Basic Equations

We must solve the Navier-Stokes and continuity equa-
tions in each flow subdomain Q"

P W+ Vp—uD av=0,

_ (1)
V.v=0, x g W,
where symbois v, ¥, and A stand for the velocity field, and
the gradient and Laplacian operators, respectively, while p
denotes the reduced pressure, ic., the difference between
real (P} and hydrostatic { — V') pressures:

p=P+ V1, 2)

with

[ 74L __plr‘}g_x, (3)
where g is the acceleration of gravity (981 em/s?). The
method allows us to disregard body forces in (1.1).

Suitable boundary conditions must be imposed. The
velocity field vanishes along the fixed walls 882

v=1{, Xxedfd,. (4)

In the sequel, symbols n and s will denote the outgoing
normal and tangent unit vectors (for a counterclockwise
oriented boundary), while t represents the reduced contact
force on 402:

t=—pn+24"D-n, (5)
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Schematic description of the problem.
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with

D=1(Vv+ W), (6)

We assume zero atmospheric pressure (in the case of slide
coating, extension of our method to the situation of a
different pressure acting on the upper and lower free surface
is straightforward). Hence, kinematic and force equilibrium
conditions on the free liquid-atmosphere interfaces 002"
(i=0or N) are written as

v.-n=0,
t-n+ V4 6Y9(s)=0,

1
Xe 6Qf ,

(7)
t-s=0,

where y(s) is the mean curvature at curvilinear abscissa s, its
sign being positive at the points of 32 where Q is locally
convex. In a similar fashion, let n, s, and y(s) be defined with
respect to layer (i) along the interface 42} separating
liquids (f) and (i + 1) (i #0 or N). Let the reduced contact
forces t'" and t“* ") be given by the formulae

"= — pn+249D -,

{F+1) (i+1) (8)
t =—pn+2u D-n,

where p and D are calculated in layer (i) for '), and in layer
{i+ 1) for t* ' This means that (t*) + F"*7a) is the contact
force exerted by interface 8Q!” on layer (i), while
(t"+ 1+ U+ Dn) is the contact force exerted on this inter-
face by layer (i + 1). Conditions on 02" are written as
vi".n=0,
virl.p=0,
(v =yl D) g =0,
(t(i) U+ l)) -n+ { V(r'] — pu+ 1)] + O.(r')x(s} — 0s

(t — Dy =0, xedQ,

(9)

Inlet and Outlet Conditions

The flow rate Q' within each layer is given. Entry and
outlet sections (324 and 902} are located far enough from
the main flow region, in order that velocity profiles be fully
developed or that asymptotic curtain flow behavior be
achieved. Hence, on any channel entry section, we may
write

v-n=7,(05),

(10)

I
=

v.s xed@",

where 7,(s) is a known function of s. As inlet conditions on
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any variable entry section, we impose parallel flow and
uniform normal reduced contact forge:

v.s=0,

(11)

t-n=c", x €90,

The additional unknowns ¢'” will be determined from the
knowledge of the flow rate:

j v-nds+ Q=0

a0 (12)
This way of writing the entry conditions is flexible, since it
permits us not to impose at the outset the layer thicknesses
and the inlet velocity profiles, which result from the calcula-
tions. On the inlet sections, data are thus reduced to the flow
rates Q' Parametric studies are easy, since any solution
having converged with a given set of parameters may
initialize the iterative process of a different problem, without
requiring any preliminary correction of the layer thick-
Nesses.

Two kinds of boundary conditions are used on variable
outlet sections. In case {a), we prescribe a zero tangential
velocity and the normal stress profile. However, in order to
keep the full advantage of obtaining the layer thicknesses as
part of the result, the latter condition is imposed through an
equivalent procedure: at the outlet, the normal component
of the reduced contact force t (as defined by (5) and (6})) is
forced to be constant for any layer; morcover, continuity of
the real normal stress profile is assumed and zero normal
stress is imposed at the liquid-atmosphere interface. Hence,
introducing unknown constants k', we write

v-s=0,
. . (13)
ta=k'  xedQl),
and
J 4 Vtr)={k“+”+ plrh (i#N),
0 (i=N), (14)

_ {f (f)
x=8020 3Ry,

Conditions (13.2) and (14) are equivalent to prescribing a
hydrostatic normal stress profile on 021",

On the other hand, in case (b), we impose a vanishing
reduced contact force at the bottom of the curtain:

t=0, xed2!h. (15)

This conditien is derived from the curtain flow asymptotic
solution (Clarke [137). Indeed, the latter shows that liquid
particles tend to fall as free solid bodies under gravity,
provided the curtain height is sufficient.
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Interface Extremity Conditions

Whenever surface tension is present, additional condi-
tions must be prescribed at the interface extremities in order
to define a well-posed problem. Let R, and 5, be the
upsiream and downstream extremities of interface (i),
respectively, and 0, and 05 denote the angles formed by
this interface with the boundary &2 of the domain. Angles
are defined within layer {f), if i # 0, and within layer (1), if
i=0, and are counted as positive or negative depending on
whether the tangent s to the interface 621" is entering or
leaving the flow domain (Fig. 2). At any wall-interface
intersection, a static contact angle 6  is given by the physics
of the problem. Hence, the additional condition is written as

Br=0gr atR, if ¢"#0 {16)
However, in the vicinity of a sharp corner (Fig. 3), the
correct result must be selected from among three different
solutions, since the interface may separate from the wall
(1) at, (1i) below, (iii) above the sharp corner. Note that in
case (i}, condition (16) is replaced by
if ¢"£0, (17}
where R, is the sharp edge location. The selection is
performed as follows: solution (i) generally exists, but will
be retained only when satisfying the Gibbs inequalities:

|éR,-|€|9R,I‘<-|5R,|+(Tf_ar'): (18)

FIG. 2. Definition of the angles 8, and 8.

BERGHEZAN AND DUPRET

(i} Left Gibbs inequality does not hold
(18 1< 18 1).

(i) Right Gibbs inequality do¢s not bold
(‘GRI‘ - |§Ri'|+n.qi) i

l6g [ = 18 |

16y, |« 164 1

[

(i) Appropriate solution

(iii) Appropriate solution

FIG. 3. Obtention of the solution for a non-vanishing interface
tension, according to the requirements of the Gibbs inequalities.

where a; is the sharp edge aperture (these conditions mean
that a sharp edge is the limiting case of a rounded edge of
smaller and smaller radius of curvature). When either the
left or the right inequality of (18) does not hold, a solution
of respectively class (ii) or {iti) must be sought.

At any interface extremity beloniging to an inflow or out-
flow section, a non-vanishing surface tension ¢! requires
imposing an additional condition of the form (16) (with
6z, = n/2), or of the form

85 =10 (= +nr/2), if aW#0. (19
Inflow and outflow sections are indeed asymptotically
perpendicular to the tilted plane or to the curtain. These
conditions are necessary in order to discard unwanted
solutions which have zero or singular velocity at the inter-
face extremity (Fig. 4). As concentrated capillary forces are
present within the interface, but not within the inlet or
outlet section, such solutions could be obtained by exerting
a non-vanishing force on the extremity. In this case,
non-right angles ., or 8, result from force equilibrivm
along the section at R, or §; (Moffat [14]).

The problem is more difficult when a given interface
tension vanishes. For real non-miscible fluids, zero tension
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FIG. 4.

is an approximation of a non-zero, but very low, value of
this parameter. Hence, the approximating model should be
obtained by letting interface tension tend to zero in a family
of approaching situations. A singular perturbation problem
is obtained in this way, since additional conditions are no
longer required at interface extremities when surface tension
vanishes. [n particuiar, the location of a wall-interface inter-
section or the value of a separation angle are functions of
the flow parameters and cannot be imposed.

Nonetheless, at zero surface tension, additional extremity
conditions are often used in literature for facilitating the
obtention of numerical solutions, whenever they seem to be
likely or justified by analytical analysis. Let us point out
that, for a closed mathematical system (which here is the
case), additional conditions are allowed only provided they
are involved by the model. Pressure continuity at an inter-
face extremity is, for example, used by Scanlan and Scriven
[15]. However, the validity of this statement is not clear,
since regularity of the interface and the pressure field is
assumed in the proof which is, therefore, not complete:
infinite curvature of the interface at the extremity cannot be
a priori discarded at zero tension. In this case, when letting
surface tension tend to zero to obtain the solution, the
product of interface tension and interface curvature might
not tend to zero at the extremity, and a similar behavior
might be observed for the pressure jump across the inter-
face, since the latter is related to this product by Egs. (8) and
(9.4). Let us alse mention that pressure singularity is
possible even with a regular interface if the latter is tangent
to the wall at the extremity (|0, | =0 or ) (Michael [16]).
For these reasons, no additional extremity condition such
as pressure continuity was used in the present work, The
validity of our approach has been confirmed by further
numerical experiments (Levieux et al. {17]), which have
exhibited a very likely singular behavior of the solution in
the vicinity of the interface extremity. Only a change in the
model could remove this mathematical singularity.
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Influence of exerting a normal force on the interface extremity.

A second example of a useful simplifying condition at
zero tension consists in forcing, when likely, a wall-interface
intersection to be located at a sharp edge. This method,
which is used in Section 4, is justified by the strong attrac-
tion exerted by the sharp edge on the interface extremity, as
will be shown further by some examples. The present state
of the theory does not say whether the exact intersection is
located at the sharp edge either within a range of values of
the flow parameters (as in the case of a non-vanishing inter-
face tension) or for isolated values of these parameters.
However, according to the numerical experiments of
Levieux eral [17], the latter behavior seems to be
observed. Nevertheless, even if the exact interface is not
originating from the sharp edge, iocating the approximate
interface origin on this edge may be useful, since we must
distinguish between numerical and analytical solutions: if
the distance between a sharp edge and the exact origin is
much smaller than the local mesh size, better approximate
solutions will be provided by this method.

2.2, Weak Formulation

The problem to solve may be written as
(20)

where X represents the set of unknowns, including the free
boundaries. A weak formulation is required for using the
Galerkin finite element method, in order to allow the
approximate solution to be less regular than if a strong
formulation were used. In general, weak formulations are
written as

{WF) Find Xe ¥ such that, for any test-function 3Y
belonging to the tangent space S(X) to ¥ at X, a suitable
inner product ¢ of G(X) and ¥ vanishes,

SM=(G(X),8Y>=0. (21)
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It wiil indeed be shown that, for free surface problems, the
linear space Z(X) is not constant.

In the present case, unknowns are both a set of curves
(i.e., the interfaces 827, i=0 to N) and a set of functions
which are defined on variable domains depending on these
curves. In particular, unknowns include the velocity and
reduced pressure fields. We require that the reduced
pressure belongs to the L?(2) set of functions which have a
summable square over the flow domain 2 =1, Q9. Within
each subdomain 2, we also impose that velocities belong
to the H,(£2'") Sobolev space of functions whose gradient
has a summable square over 2“. Moreover, velocities are
constrained to satisfy essential conditions (4) and (10). in
general, we prescribe-that all functions and free curves are
regular enough to give a sense to the integrals involved (see
also Dupret [7]).

A peculiar feature of our method lies in introducing
additional unknowns (or Lagrange multipliers) which are
defined either along the liquid—-atmosphere interfaces,

A,=t-n, xe8Q)" (i=0o0r N), (22)
or along the liquid-liquid interfaces,
A7 =t".n,
At =tt+ Do,
" (23)

A=t g =i+l g

x€dQ}” (i=1to N—1),
or along the inlet and outlet free sections,

Lo=1-5, xedR!or a2t (i=t,.,N) (24)
We shall see that Lagrange muitipliers provide an efficient
way of imposing kinematic conditions along the free
boundaries. According to this approach, velocity continuity
across the interfaces is not imposed in a strong, but in a
weak sense. The technigue will be justified in Section 3.3.

Construction of the Weak Formulation

Let us now step by step build a weak formulation of the
problem. The variational form éM involved in (21) will be
a suimt,

SM=05M,+6M,+5M,. (25)
The first term &M ; 1s defined as
oM, =Zf [pUy-Vy-5v
ol
+2uD 8D - 8(pV -v)] do, (26)
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where Sp(x} and dv(x) are arbitrary test functions (which
are part of §1), while 4D is given by

ID=L(Viv+ Vv, (27}
and 8(pV -v) is defined from the shortened notation
d{ab)=a(ébh) + (da) b. (28)

Test functions dp(x) belong to the L*(2} space, while test
functions dv(x) belong to the H,(2) space within each
subdomain Q¥ and are constrained to vanish along each
part of the boundary where velocities are imposed by (4)
and (10):
dv(x)y=1,

x€dQ, or 3QW (if fixed).  (29)

Integration by parts shows that the weak formulation
(21) implies that the strong equations (1) be satisfied for
regular unknown functions. From (5), (6), and (27), and
taking (29) into account, {26) yields

SM, =M%+ M+ oM< +3M°, (30)
with
M=% Lp"v-Vy
7o
+Vp—u'2Av).8v—V-vép] do, (31)
M= Y J-,t-évds
i={or N JQ}H
(aQ}”l‘ree]
c [ e
0N "2
—t“"’”-év“*’”)ds, (32)
N
oMi= Y | tévas (33)
i-1 ey
(62! free)
N
SMS=Y j Ltdvds, (34)

i=1 G.Q,f
Letting 3M vanish for any test function §Y causes oM { to
vanish for any ép and any particular év which vanishes
along each 8Q%, since dM reduces to dM ¢ in this case:
Hence, (1) is satisfied within each subdomain Q7.

The second term dM, of M in (25)is a sum,

SM,=38M{+3M5+ M}
SMy=d0ML+ M

(case {a)),

35
(case (b)), (35)
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with

SM{= —
Fr=0or N
[G.ij] frec)

[, 800, ds
2!

_ S g+ i+ 1)
Y Lgmé(ﬂ," v — Aol
i#0,N 'r

+ A0 —plt 1)) ds,
{j 3,
aQ:"n

+A,0,)ds— Q" :Sc‘”},

(36)
N
oMs= - ¥
i=1

(r?!'.’:'} free)

(37)

N
Mi=-Y f [k 8u, + 8(A,0,)] ds
i=1"¢

o.Qf,n

N—1
4+ Z (k“’ LIS DI VS L VT 1))31 Sk

i=1
+ (Y 4+ VY o KN {38)
where 824,(s), 841 (s), 64 (s), dids) are arbitrary test
functions (belonging to suitable functional spaces), while
de'’ and &%) are arbitrary numbers, all being part of §Y.
Shortened notations (28) and

dla+b)=0da+db (39)
are used.

The weak formulation (21) involves boundary and inter-
face conditions (7.1}, (7.3}, (9.1), (9.2), (9.3), (9.5), (11) to
(14}, and (22) to (24) to be satisfied for regular unknown
functions. This may easily be shown by adding Eqgs. (32) and
(36). (33) and {37), and (34) and (38), respectively, and by
recalling that (31) has been proved to vanish. The expected
result follows by letting the terms in du,,, dv,, 64,, ... vanish
successively in {6M | + dM,). We should emphasize here
that our weak formulation of free inlet and outlet conditions
is very efficient, since only the flow rates Q' need to be
imposed.

The iast term 5M; of M is the sum

SM;=086Mi+6M5+oM7, {40)
with
sMi=— Y j (A V) S ds

i=00r N ‘jgfn
(JQ}-') free)

- Z . ()“};_‘-jb!‘:'
i£0N ’LQ}!'

+ VO iy Sy s, {41)
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L, d o
o _ (L2 Shiiiniend
oM = Z," {J-eg}‘lg ¢ ds as
(22" free)
. e 50(]&3}”}, {42)
sMi= Y [o"{cosf—cos 9)5)}]69?], {43)

i
(302 trec)

where da(s) is an arbitrary test function {part of 6 Y) which
is constrained to vanish at any fixed interface extremity, and
¢(s) denotes the angle between the normal n and the
horizontal direction {Fig. 5). The symbol dy is defined by

&y = dufsin 4, at R;or S, (44)
and is used to simplify the notations {s¢e Dupret [8]).
From the identity
de ;
xs)=—-, xedRy, {45)
it is casy to integrate {42) by parts:
oMi=— § |  oysuds (46)
; !

(69}” free)

Hence, letting éM vanish, from (21), for any Y causes
{(8M %+ 8M7) to vanish for any particular do which is zero
at the interface extremities, since oM then reduces to
(M 4+ 3M2). From (46), this shows that boundary and
interface conditions (7.2) and (9.4) are satisfied for regular
unknowns. As M then reduces to di %, letting, in (43), the
terms in dy(R;) and 0y(S,) vanish shows that extremity
conditions (16) and (19) are satisfied (if R, is not fixed ).

Introduction of capillary conditions via Egs. (45) and
{42) was performed in Dupret [8] on the basis of a
variational approach. This method differs from the one of
Ruschak [11], with the advantages of allowing a greater
freedom in the selection of interpolating functions (through
the use of Lagrange multipliers) and of aliowing an easy
treatment of static contact angies.

acdd

FIG. 5. Definition of the angle ¢(s).
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3. NUMERICAL METHOD

3.1. Discretization

From the weak formulation (21), equations are easily
made discrete by defining suitable subspaces ¥* and Z*(X)
of ¥ and Z(X). Following the Galerkin f{inite element
method (Strang and Fix [18], Zienkiewicz [19 1), these are
obtained by introducing appropriate global shape functions
we(X), 7,,(x), v,(5), and y,(s}, and by using the following
approximations:

v(x) =3 Vi (x),
k

dv(X) =) dv,mdx),
k

(47)
P(X)=Y Pu(X),
Op(x) =} 0P, wmlX), xe W,
As)=Y A,v,(s)
9
dA(sy=73 64,v(s), xefree 62} (48)
o
or free 2 or 0Q'7,
X(s) =3 x,1.(s),
i (49)

da(s) =Y do,x,(s), x € free Q1.

In the latter, symbols v,, p,, 4,, and x, stand for the
unknown nodal values, while dv,, dp,,, 62, and da, are
arbitrary numbers (or vectors), each of them being
associated with a particular equation (or couple of
equations) of the system, For the sake of brevity, a common
symbol Ai(s) is used for representing all the different
Lagrange multipliers 4,,(s), 4,7 (s), ... defined on the interfaces
and the free inlet and outlet sections.

In order to approximate the velocity and pressure fields,
we use quadratic or biquadratic, and linear or bilinear
polynomials, respectively, on the triangular or quadrilateral
parent element. As discussed in the previous section,
velocities and pressure are not imposed to be continuous on
the fluid—fluid interfaces, where nodes are thus doubled
{recall from Section 2.2 that velocity continuity is imposed
in a weak sense).

Peculiar Discretization on the Interfaces

Extensive freedom is allowed in selecting appropriate
shape functions for the Lagrange multipliers and the coor-
dinates. The variational method which is used for solving
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the system, however, imposes that all these functions be
continvous. Following Babuska [10], mesh convergence is
improved by using linear Lagrange multipliers. Moreover,
curved interface boundaries are preferred to piecewise
rectilinear ones when surface tension is present. Therefore,
our basic optien consists of using, on the one-dimensional
parent element, piecewise linear shape functions for the
Lagrange multipliers, and piecewise quadratic shape
functions for the coordinates and the test functions dafs).
Element sides may thus be curved along the interfaces.

However, as liquid-liguid interface tension is normally
neglected, Egs. (21), (25), (40) to (43), and (44) imply that
equality

(i#0, N),
(50

"

—j ST = A VO V) Gy ds =0
505

must hold for any test function da(s). In this case, selecting
our basic option for discretizing 47 (s), 2,7 (s}, and da(s) will
lock the system, since an interface formed by m one-dimen-
sional elements has (m + 1) nodes both for 4, and A}, and
(2m + 1) nodes for dx. Hence, Eq. (50} yields (2m + 1}equa-
tipns, where the unknowns may be grouped in the (# +1)
nodal differences (4 —A47). Such a system is clearly
impossible, but it can be unlocked by using quadratic shape
functions for the Lagrange multipliers 4 and 4} . Unfor-
tunately, a new locking mode may be found, since Egs. (21),
(25), (35), and (36) imply that equality
- Lu. (85,7 00 = 84 001 1 51 (50— 50+ 1)) ds

Gf

=0 (0, N) (51)
must hold for arbitrary test functions 64 (s}, 841 (s), and
d4(s). I the upstream interface extremity is free on the fixed
wall 082, there are eight nodal velocities on the interface
extremity and the adjacent midside node (as velocities are
discontinuous on the interface), while there are four essen-
tial conditions (4), plus five equations resulting from (51),
which must be satisfied by these eight unknowns. Finally,
the system is unlocked by using, on the liquid-liquid inter-
face sides which are adjacent to the boundary 8£2, linear
shape functions for 4 (s), 27 {s), and du(s). The same dis-
cretization could be used over the entire interfaces, but the
results are of lower quality. Let us mention that a particular
treatment of the interface was also used by Dheur and
Crochet [20] in the vicinity of the separation line when
surface tension vanishes.

On any intertace, from (49), the number of interface coor-
dinate nodes x, is exactly the number of arbitrary dz«,, ie.,
the number of degrees of freedom of the test function da(s).
In order to obtain the same number of equations and
unknowns, interface coordinate nodes are constrained to
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fixed straight lines or circles, whose equations may be
written in the form

A X+ B y—C(x*+yH)=D,. (52)
These loci differ from free spines (Ruschak [11], Kistler
[5]), since only interface nodes are constrained, and they
must be constructed in such a manner that the expected
interface deformation be possible. Data introduction is
facilitated by introducing in a first stage only a few con-
straining lines, while any locus which remains undefined is
calculated by linear interpolation on the coefficients A4,, B,,
C., and D, of the couple of enclosing and already defined
loci. Bundles of parallel or convergent straight lines, or of
circles of the same radical axis, are thus obtained. Examples
are shown in Fig. 6, where the particular case of a fixed
interface extremity, whose locus is a circle of vanishing
radius, must be emphasized.

The system of discretized equations must be completed by
describing how the meshes are deformed. The technique,
which consists in moving internal nodes according to the
displacement of the interfaces, is described in the next
subsection. Note that only rectilinear internal sides are
accepted.

3.2. Mesh Conditioning

In order to provide accurate solutions, moving meshes
must be as well-conformed as possible. However, this objec-
tive is severe, since interface shapes are strongly dependent
on the parameters of the problem, while the same mesh
topology will be used within a wide range of these
parameters in order to allow easy parametric studies.

The method which is developed here consists in fixing
after displacement, at each iteration, the boundary and
interface nodes, and then moving the internal nodes until
the mesh is acceptable. This result is obtained by exerting on
any internal node a pseudo-force which tends to correct ill-
behaved elements and which vanishes for a satisfactory
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solution. Hence, the sole problems are to define appropriate
pseudo-forces and to build a suitable iterative scheme for
obtaining the deformed mesh.

Definition of Pseudo-Forces

Consider first the case of straight-sided triangles. Any
nodal pseudo-force F*' is a sum of contributions F}/
furnished by the elements which are adjacent to the global
vertex x*/;

F*= ¥  F¥

k such that
vertex f € element &

(53)

For defining all the pseudo-forces, it is sufficient to consider
a single triangle. Local vertex numbering may thus be used
and F' will denote the contribution F*/, provided / is the
global index of the ith vertex of element k. It is convenient
to use the following notations: symbols S, ¢;, and ¢, denote
the area of the triangle, its ith angle, and the length of the
opposite side, respectively, while ¢;, and ¢, stand for the
lengths of the couple of sides which are adjacent to vertex x’
(Fig. 7).
A first attempt to define appropriate pseudo-forces F' was
made by letting the latter derive from a pseudo-energy £
Fi=—VUE,, (54)
where V' denotes the gradient with respect to vertex i.
Hence, this method counsists in minimizing the total
pseudo-energy for fixed boundary and interface nodes.
The pseudo-energy of a given triangle was defined by the
formula

3 1
E,=s(z . ¢:__4). (55)

i=1

It is easy to show that £, vanishes and is a minimum when
the triangle is equilateral, whatever its area S, and that E is

FIG. 6. Constraining lines for the free surface nodes:

, lines introduced in a first stage; ——, interpolated lines.
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€3 = €11

FIG. 7. System of pseudo-forces exerted on a triangle.

infinite for a degenerate triangle with one or two vanishing
angles. This means that the best-shaped elements were
expected to result. Nonetheless, poor results were observed
in some cases, so improvement of the methed turned out to
be necessary.

Equation (55) may be written as

E=rs a2 —taing 56
l_2i=1 i€z Sin¢i_381n il- { )

Hence, replacing ¢, and ¢;, by the suitabie ¢;’s and differen-
tiating (56) yields from (54} the formal development

Fi: F{.s]+ Fz;n)’ (57)
with
) *OE, .
Flo=—-2% E—C—_’V"’cj,
i=1 7

{58)

F: = i %thﬁ

(1) P a{fb i

Two pseudo-force components are thus set apart. The
former Fi,, consists of terms which are parallel to the
sides ¢, of the triangle, since we may write

) 1

(N — o
v Cf_e-’c i
7

(59)

where the coefficient eJ',l is 1, 0, or — 1, following the values
of indexes / and j. The latter component F{, may be inter-
preted as arnising from a set of three pseudo-momenta M,

1

; 1 4
M’=§Cﬂcj2 (m+§) cos ¢, (60}

which tend to correct the angles ¢; of the triangle by opening
the acute angles and closing the obtuse ones (Fig. §).
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S o~
1 , cjl

FIG. 8. Pseudo-momenta exerted on a pair of adjacent sides.

Improved solutions were obtained by suppressing the F;S)
component of the pseude-force:

F:':Fi

- (61)
Equilateral triangles remain perfectly shaped (with
vanishing pseudo-forces), but the existence of a solution is
not strictly ensured, since we no longer have a minimum
problem. However, the quality of the results may be
explained by observing that pseudo-forces are defined in
such a way that small sides do not play a more important
role than longer ones. Indeed, according to Eq. (60}, the
internal pseudo-forces which are associated with two similar
triangles are exactly proportional to the sizes of these
triangles. Hence, induced displacements will be of the order
of magnitude of these respective sizes.

Consider now the case of straight-sided quadrilaterals.
On any such element, four triangles are superposed, each of
them being formed by the coupie of sides (of length ¢;, and
¢;») which are adjacent to a given vertex x;, and by the
opposite diagonal (of length &;) (Fig. 9}. Formula (36) is
extended by defining the pseudo-energy E, as

4
E,=x Y E.,

=1

N | 1 .
E.;:ECHC[Z (Si—w—(’:_ﬁsm ¢a)

p—1 2 | .
+mj§l ng,-(m—ﬂﬂnqﬁg), (62)

where ¢ and f are suitable parameters (>0, 1 € f<2),
and ¢, (j=1,2) are the angles at the vertices which are

3
x 5 %3
+
51 x! %2
x4 x4 3
+ +
1
Xl x x2

FIG. 9. System of pseudo-forces exerted on a quadrilateral.
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adjacent to x,. Pseudo-forces are obtained in the same way
as for triangles, by writing

Fi= Fim)

3

i=1

DE, ..
IV 4
[aasj %

2 8E, ..
Y E&i V‘”;iajk}. (63)
k=1 7

It is possible to show that squares are perfectly shaped, with
vanishing pseudo-forces, whatever x and . When the value
f=1 is selected, even rectangles are perfectly shaped.
Numerical experiments have shown that good resuits are
otained using the values =3 and §="7/6. This selection
provides a suitable pseudo-force ratio between triangles and
quadrilaterals, while long and thin rectangles are avoided
inside the domain since £ is not exactly one.

Besides rectilinear sides, curved sides may also be used
both in triangles and quadriiaterals, but only along the
boundary and the interfaces, whose nodes are fixed during
mesh conditioning. Hence, it is clear that pseudo-forces can
be calculated exactly as if curved sides were not present.

Solution Procedure for Mesh Control

The flow problem is solved using an iterative scheme
which will be described in the next subsection. At any itera-
tion, after displacement of the interfaces, mesh conditioning
is performed separately by assembling nodal equations,

F*/(x*") =0, (64)
and by solving the latter using Newton’s method. In order
to obtain the first well-conditioned mesh from the initial one
before starting the calculations, a particular technique of
residual relaxation has been introduced since equations are
difficult to solve when mesh deformation is too important.

The technique consists in solving instead of (64} a sequence
of N* systems of the form

FH(x}") = w,F*(x3™)

(I>w >wy> - >wy.=0), (65)

where the symbols xJ™ represent the initial vertices, while
X 4" =x*" denote the vertices of the corrected mesh. Any
intermediate solution x*”, serves as the starting value for
solving through Newton’s method the new system, whose
unknowns are the x *™’s.

The method described in this section provides good
results, An example of first correction is shown in Fig. 10.
Improvements are, of course, possible. However, the general
scheme should be retained since the method is fully
automatic and can be used without tuning for any mesh
topology.
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FIG. 10. Example of initial and first corrected mesh (note that
interfaces are fixed during correction).

3.3. lterative Algorithm

Early methods for solving free-surface problems were
based on an iterative scheme using two basic modules. The
first one solved, over a fixed domain, a reduced problem
obtained by discarding one of the free-surface boundary
conditions; the second one determined the new location of
the free-surface with the remaining equation. This could be
either the kinematic or the normal stress condition. These
methods were introduced by Nickell etral [21], and
extended by Silliman and Scriven [22] to the case where
surface tension is present.

The whole procedure may nonetheless remain too slow,
especially when other nonlinearities are present. A faster
method is to iterate simultaneously on all the unknowns of
the problem. This was first done by Ruschak [11], and is
the approach chosen by Saito and Scriven [3], Kistler
f5], ... and in the present paper.

Development of a Newton method in the case of a
problem in a fixed given domain is quite simple. Suppose the
problem has a weak formulation of the form (21). The
tangent linear space =(X) is constant. Hence, one has only
to fix the test function §Y and expand the form dM into a
series up to the first order. The linear equation to be solved
at each iteration and giving the increments 6% ,,,

SXm=Xm+1_Xm’ (66)
is of the form
(H(X,)dX,.0Y>+{G(X,), 6Y)
=0, VéYelZ, (67)

where H(X}is a linear operator. The latter equation may be
developed for the continuous problem (21). Discretization,
which gives the stiffness matrix, may then be carried out on
this continuous form (67).



176

The case of a free-surface problem is more difficult,
because an exact Newton method needs to be developed for
the discretized form of the equations (as done by Ruschak
[111). This procedure has provided numerous useful results
in the last few years (see, in particular, Saito and Scriven
[3], Kistier and Scriven [4], and Kistler [ 57). Our solution
is different and consists, following Dupret [9], in using a
Newton-like method developed for the continuous form
(21) of the equations and discretized in a following step.

Exact Newton and our Newton-like methods are
basically similar. In both cases, the iterative scheme is
derived by linearising the coupled equations of the problem.
Convergence rate is quadratic in the former case, and quasi-
quadratic in the latter case, which means that convergence
is all the more quadratic as long as the approximation is
improved (as a consequence of mesh refinement). Indeed,
linearisation and discretisation of the weak continuous form
of the equations do not exactly commute for a free-surface
problem.

Any iteration of our Newton-like scheme consists of four
sub-steps:

(1} - solutton of the coupled linear system, which
provides velocity and pressure nodal increments at fixed
locaticns, and nodal normal displacements of the free
boundaries;

(i1) displacement of the free boundaries according to
the results obtained in (i}, and relocation of the interface
nodes on their constraining loci;

(iii)

(iv} correction of the velocity and pressure nodal values
from the results obtained in (i), (i), and (iii), in order to
take into account the change of mesh topology.

mesh conditioning;

Linearisation of the Continuous Weak Equations

The linear equation to be obtained in the continuous case
has the form

(H(X,)0X,,0Y)+{G(X,), Y

=0, YéYeZ(X,) (68)

It requires computing the variation of (21) including varia-
tions of the domain of integration. Examples of the use of
such variations may be found in the papers by Luke [23],
Tkegawa and Washizu [24], and Dupret [8], for solving
inviscid flow problems, and in Dupret [9], for solving
viscous flow problems. The theory is developed in Dupret
(7, 8]

Let 27 denote a family of flow domains which con-
tinuously depend on one or several parameters (/7). The
boundary 8027 consists of a free part 27, of extremities R”
and S, and an unvarying part 62/, Symbols n, s, 5, 6, and
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¢ have the same meaning as in Subsections 2.1 and 2.2. For
any infinitesimal variation 677 of the parameters, Su(s)
stands for the first-order terms of the distance between Q7
and BQ”””, as measured along the normal n(s), whlle
Sy(RTY and ov(S™) are the first-order terms of the dis-
placements of the extremities R and S*/, measured along
the tangents s, (R”) and s5,{S") to 327 (Fig. 11).

Consider any scalar field f”(x), which is defined on 2%
and continuously depends on I7. Let §f(x) denote the first
variation of /7, i.e., the first-order terms in the expansion of
(f7+%7(x)— f7(x)) in powers of 31T {observe that both
F7+¥ and £ are evaluated at the same location x). In a
similar manner, let v7(x) and v(x) stand for any vector
field and its first variation. The following theorems allow us
to calculate the first variation of functionals defined from

fFA(x) or v(x):
§| fmdo=| Sfde+|  f7éuds; (69)
Qf ol 3]
Al I
5| rids=| [5j+f sa—p Y 5‘”]
acf
+ [fn (¢ du—c0s 0 0y) Jsors (70)
S fmds=|  ofds+1f"8Ysan an
anf o’ :
SJ v”-nds=J [6v-n+ V. -voa]ds
a2l aQf
+ [vTxs, Sy]mjr. (72)

afl
Ty(R) (=0)

Tr(8) (>0}

FIG. 11.
and &y(S).

Free surface iterative displacement; definition of da(s), 83(R),
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The validity of these formulae is, of course, subject to some
constraints on the regularity of 27 and of f7(x) or v"(x).
In particular, defining appropriate extensions of the latter
functions over 27U Q7 +%7 must be possible. Some aspects
of these difficult questions are addressed in Dupret [71.

If the continuous case expansion (68} is desired, it seems
to be sufficient to take the first variation §{M), which
yields H(X} from

CH(X) 8X,8Y> = 8(6M). (73)

However, a first problem lies in defining (X + 5X) from X
and &X, since the latter belongs to the tangent linear space
Z(X), while X and (X +6X) both belong to the nonlinear
space ¥. Moreover, in contrast with the case of a problem
in a fixed domain, fixing the test function JY when
expanding 6 M in powers of X becomes meaningless, since
8Y belongs to the space =(X), which depends on X. The
solution consists in projecting the spaces Z(X 4 4X) onto
Z(X) in some vicinity of X. The expression 4(6M) is
then obtained by expanding SM(X + 3X) while fixing the
projection of § ¥ onto Z(X).

The particular method which we use for solving free
boundary problems is the following:

(i) the first variations v(x} and dp(x) of the velocity
and pressure ficlds are defined on fixed points of the flow
domain (), 27 as explained above;

(it} any Lagrange multiplier A(s) is extended in the
vicinity of its definition interface Q24" by assuming that the
extended function is constant on any normal to d€2}":

a4
—=0 74
n (74)

hence, the first variation 32(s) may be defined as in (i);

(iii) the first variation du«(s) is measured along the
normals to the interfaces, as explained above;

(iv) the projections of the test functions d v(x) and dp(x)
from E(X+8X) onto E(X) are defined as being the same
functions, except that their domain becomes | J, 2", with
appropriate extensions if necessary; this means that we may
formally write:

S(5v)(x) =0,
_ (75)
olap)x) =90,

XEU Q(i);
i

(v) any test Lagrange multiplier #(s} (and, in par-
ticular, dx(s)) is extended as explained in (i1); projections
are defined in such a manner that the following relations
hold on the interface:

581/111/1-13

177

T

(

0A)s)=0,
{76)
(da)(s) =0,

Qv

1.
xe o)

{vi) any arbitrary test number 3K is kept constant when
projected onto Z(X'}; hence, we write

(oK) =0. (77)

On this basis, the complete development of §(8Af) may be
calcuiated. The result is given in the Appendix. The linear
system to be solved at each iteration is obtained from the
continuous form (68) by using the approximations (47) to
{49). The solution is found by applying the minimum degree
ordering (MDOQ) algorithm (see George and Liu [257),
in a version adapted to solving nen-symmetric systems
(Berghezan [261]).

It should be observed that obtaining the expansion (68)
from (73) required to express all the conditions holding on
the interfaces, and the variable inlet and outlet sections, in
a weak form (by means of Lagrange multipliers). Indeed,
the first variation 8(8M) could not be obtained easily if the
unknown fields were constrained by essential conditions on
the free boundaries. On the other hand, the necessity of
using a priori discontinuous velocity fields (the continuity
being weakly imposed) is obvious when considering that
first variations §v(x) are normally discontinuous on the
interfaces, as being calculated on fixed points of the flow
domain.

Global [terative Algorithm

From the nodal normal displacements da,, together with
the extremity displacements §y(R) and §y(S), the new con-
figuration of any interface is easily calculated. New interface
nodes x, are relocated on their constraining loci and the
mesh conditioning procedure provides new locations of the
internal nodes. As incremental nodal values §v,, dp,,, and
54, are defined on old nodes, computation of the new nodal
values of the unknowns is performed in two steps. First,
provisional values are calculated at old nodes by

vE=v 4 Sy, (78)
and similarly for pY and 2¥. Then, nodal values are
corrected from

{new) __ o 4 1y (new) (old)
vl = S (x — X Y)

(VYY) 4 Vv E), (79)

and the same for pi'** and 2{"**'. Details are given in
Dupret [8]. It is worth mentioning that solving the coupled

linear system, at each iteration, is far more expensive than
performing all the remaining operations.
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In its original form, this global iterative scheme has
shown to fail in some cases as a consequence either of too
high increments, especially during the first iterations, or of
divergence of the mesh conditioning procedure. In order to
nonetheless obtain convergence in these situations, the
following method has been used:

(i) when any nodal increment is higher than a
prescribed norm, a common underrelaxation factor is
applied to all increments in order to lower the critical value
below the pre-selected level (using this technique concerns
only a few iterations of the scheme and does not affect the
subsequent quasi-quadratic convergence rate);

(ii) when necessary, the interface displacement—mesh
conditioning—nodal correction procedure is performed in
several subcycles, without significant increase of the global
cost.

The solution procedure presented here—as based on a
variational approach—is an interesting alternative to the
more classical use of an exact Newton method for solving
free surface problems. Although the theory is quite complex,
an important advantage is that the Jacobian (or stiffness)
matrix is not dependent on the particular mesh correction
technique. Solving the linear systems and moving the mesh
are decoupled operations, whence the radius of convergence
of the iterative scheme seems to be enlarged (because the
strong non-linearity of the mesh conditioning procedure has
no influence on the global convergence rate). A detailed
discussion may be found in Cuvelier and Schulkes [27].
Another advantage is that developing the stiffness matrix
for the continuous problem before building the discrete
equations facilitates any change of discretisation, such as a
change of degree of the polynomial approximants (this
technique has been used in Levieux er al. [17]). Examples
are analysed in the next section.

4. RESULTS AND DISCUSSION

As announced in Section 1, we analyse here (a) the out-
flow from a planar slot and (b} the curtain flow (Fig. 1). In
both cases, parametric studies are performed around a basic
solution in order to determine the sensitivity of the result
with respect to the material and flow parameters.

Three liquid layers are considered. Viscosities, interface
tensions, contact angles, and flow rates are given in Table I
for the basic problem, whose solution is shown in Figs. 12
and 13. The quality of these results is obvious. Interfaces,

. streamlines, and velocity isolines are smooth, while strongly
distorted elements are absent in the deformed mesh. In
both cases, the solution exhibits the expected physical
behaviour, and, in particular, the flow domain appears
to be the location of an important—upstream to
downstream—reorganization of developed flows. Indeed,
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TABLE I

Data for the Basic Problem

Specific mass of each liquid ! g/cm?
Dynamic viscosity

layer (1) 15mPas

layer (2} 30 mPas

layer (3) SmPas
Flow rate of each liquid layer 1 /m/min
Liquid-atmosphere interface tension 40 mN/m
Liquid-liquid interface tension 0
Contact angle between wall and rear curtain layer e

the shear influence of a fixed wall, from which a new (a)
fluid-fluid or (b) fluid-atmosphere interface separates,
suddenly ceases. However, related to the elliptic character
of the Navier—Stokes equations, streamline reorganization
starts upstream of the separation line.

The first parametric study is performed by letting the flow
rate of the lower fluid layer vary in case (a). The successive
interfaces between this layer and the adjacent upper one are
shown in Fig. 14. We observe that, at low flow rates, the
separation line is located under the salient corner, whose
attractive influence 1s obvious. At higher flow rates, the line
separates from this corner. No solution has been obtained
with a separation line located above the corner. As fluid—
fluid interface tension vanishes, it must be kept in mind that
location of the separation line cannot be imposed in the
analytical solution. However, imposing this location is
allowed (and necessary) in numerical calculations when the
distance between the separation line and the salient corner
is much lower than the characteristic size of the surrounding
mesh. In this case, numerical calculations are not able to tell
whether the distance is—or is not—vanishing, Only more
refined meshes could give a more precise answer.

The second set of solutions {Fig. 15) illustrates the situa-
tion with a separation line located above the salient corner.
Both a high flow rate of the lower fluid layer and a non-
vanishing fluid-fluid interface temsion were necessary to
obtain these results. When the interface tension tends to
zero, with a fixed imposed contact angle, the location of the
separation line tends towards the corner. Hence, the
previous conclusion, emphasizing the strong attractive
influence of this corner, is enforced.

The third and fourth parametric studies are devoted to
analysing in case (b} the influence of the separation contact
angle and the flow rate of the rear layer, respectively { Figs.
16 and 17). It may be observed that both the location of the
separation line and the asymptotic location of the curtain
are very sensitive to the flow parameters. More stable
solutions would be obtained by designing a sharper coating
device extremity. The upstream behaviour of the forward
fluid-atmosphere interface is also noteworthy. The strongly
damped oscillations of this interface are related to the
presence of steady capillary waves.
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FIG. 12. Outflow from a planar slot: a. calculated interfaces; b. converged mesh; c. streamlings; d, e. isolines of horizontal and vertical velocity
components by steps of | cm/s.

FIG. 13, Curtain flow: a. calculated interfaces; b. converged mesh; ¢. streamlines; d. isolines of horizontal velocity component by sieps of § em/s;
¢. isolines of vertical velocity component by steps of 2 cmy/s.
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40° 60° BO°

]

FIG. 16. Curtain flow: influence of increasing the contact angle.

FIG. 14. Outflow from a planar slot; influence of increasing the lower
flow rate {in i/m/min} on the lower interface. Obtaining the solution was easy, or more or less difficult,

depending on the case. A quasi-quadratic convergence of
the iterative scheme is generally observed, but only in the
vicinity of the solution. Finding a first solution is always
harder than performing a parametric study, and case (b) is
much more difficult to handle than case (a).

1T 41 1=
. lmml
d

FIG. 15. Outflow from a planar slot; influence of decreasing the lower
interface tension (in mN/m) on the lower interface. The lower flow rate is
8 |/m/min and the contact angle is 40°.

FIG. 17. Curtain flow: influence of increasing the flow rate (in
I/m/min) of the rear layer.
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Some particular techniques were useful in facilitating the
obtention of the first solution, essentiaily in case (b}

— starting from smooth initial interfaces and exact
asymptotic layer thicknesses;

— introducing high artifictal fluid—fluid and fluid-
atmosphere interface tensions (typically, 50 mN/m); the
correct result is obtained by performing a parametric
decrease towards the actual values;

— alternating blocked and free iterations, which means
that after each full iteration, interfaces are fixed and a
solution is found which does not satisfy the normal force
interface conditions;

— using the underrelaxation method described in
Subsection 3.3 (typically, normal displacement of free
boundary nodes is limited to 10~? cm);

— sub-cycling the displacement and correction proce-
dure, as explained in Subsection 3.3 (typically, when the
normal displacement is of the same order of magnitude as
10~ % cm, three sub-cycles are used).

5. CONCLUSIONS

We have presented a variational method for solving the
Newtonian steady state flows involved in the coating pro-
cess. Application of this method to simulating the outflow
from a slot and the curtain flow has shown good results.
Further work will deal with flow stability analysis.

APPENDIX: LINEARIZATION OF THE SYSTEM

Linearization of the continuous form {21) is performed by
applying the theory presented in Subsection 3.3, Following
Dupret [7, 8], Eq. (20) may be introduced into the result in
order to simplify the linear system. Shortened notations
{(28), (39), and

$ofg=0fdg+df bg.

A ) (A1)
§o2=2816f

are used. After calculation, variational formulae (69) to (72)
and (74) to (77) yield
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where the symbol 7, denotes the curvature of the wall.

It is convenient to introduce additional Lagrange multi-
pliers {(R;) and {(S;) at the ends of the free boundaries and
to define the forms

L= % [—§5d+C51}Sin5]m}n (AR)
(Ds’zji;free]
and
S6L= Y [—68al+358(y)sin 0]a0m.  (A9)

i
(a2 free)

which are added to 6M and § M, as defined by (21), (25),

and {73). Symbols 6{(R;) and 8{(5,} are arbitrary numbers

which, from (A9), impose that
&y = Sa/sin 0,

atR,or S, {A10)
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be satisfied. Symbols éy(R,) and 5y(S;) are no longer related
to da(R;) and du(S;) by Eq. (44), so they become arbitrary
numbers. The weak formulation is, however, equivalent.
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